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Abstract
A self-action problem for a point-like charged particle arbitrarily moving in
flat spacetime of six dimensions is considered. A consistent regularization
procedure is proposed which relies on energy–momentum and angular
momentum balance equations. The structure of the angular momentum tensor
carried by the retarded ‘Liénard–Wiechert’ field testifies that a point-like source
in six dimensions possesses an internal angular momentum. Its magnitude is
proportional to the square of acceleration. It is the so-called rigid relativistic
particle; its motion is determined by the higher derivative Lagrangian depending
on the curvature of the worldline. It is shown that the action functional contains,
apart from the usual ‘bare’ mass, an additional renormalization constant which
corresponds to the magnitude of the ‘bare’ internal angular momentum of the
particle.

PACS numbers: 03.50.De, 11.10.Gh

1. Introduction

Recently [1, 2], there has been considerable interest in the renormalization procedure in
classical electrodynamics of a point particle moving in flat spacetime of arbitrary dimensions.
The main task is to derive the analogue of the well-known Lorentz–Dirac equation [3]. The
Lorentz–Dirac equation is an equation of motion for a charged particle under the influence
of an external force as well as its own electromagnetic field. (For a modern review see
[4–6].) In an earlier paper [7] the Lorentz–Dirac equation in six dimensions is obtained via
the consideration of energy–momentum conservation.

All the authors [1, 2, 7] deal with an obvious generalization of the standard variational
principle used in four dimensions

I = Iparticle + Iint + Ifield (1.1)
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with

Ifield = − 1

4�D−2

∫
dDy FµνFµν Iparticle = −m

∫
dτ

√
−ż2 (1.2)

and the interaction term given by

Iint = e

∫
dτ Aµżµ. (1.3)

By �D−2 the area of a (D − 2)-dimensional sphere of unit radius is denoted as

�D−2 = 2
π(D−1)/2

�
(

D−1
2

) . (1.4)

The functions zµ(τ ) give the particle’s coordinates as a function of proper time τ ; żµ(τ ) =
dzµ(τ )/dτ .

Strictly speaking, the action integral (1.1) may be used to derive trajectories of the test
particles, when the field is given a priori. It may also be used to derive D-dimensional Maxwell
equations, if the particle trajectories are given a priori. Simultaneous variation with respect
to both field and particle variables is incompatible since the Lorentz force will always be ill
defined in the immediate vicinity of the particle’s world line.

The elimination of the divergent self-energy of a point charge is the key to the problem.
In four-dimensional spacetime one usually assumes that the parameter m involving in Iparticle

is the unphysical bare mass. It absorbs the inevitable infinity within the renormalization
procedure and becomes the observable rest mass of the particle. In D dimensions the Coulomb
potential of a charge scales as |x|3−D [8]. Inevitable infinities arising in higher dimensional
electrodynamics are stronger than in four dimensions.

Therefore, in even dimensions higher than four divergences cannot be removed by the
renormalization of mass included in the initial action integral (1.1) [1, 2, 7]. To make classical
electrodynamics in six dimensions a renormalizable theory, in [7] the six-dimensional analogue
of the relativistic particle with rigidity [9–11] is substituted for the structureless point charge
whose action term is proportional to worldline length. The corresponding Lagrangian involves,
apart from usual ‘bare mass’, an additional regularization constant which absorbs one extra
divergent term. In [2] the procedure of regularization in any dimension is elaborated. It
allows removal of the infinities coming from the particle’s self-action by introducing new
counterterms in the particle action.

In the present paper the problem of renormalizability will be reformulated within the
problem of Poincaré invariance of a closed particle plus field system. We calculate the
energy–momentum and angular momentum of the retarded electromagnetic field generated
by a point-like charge in six dimensions. As it is in four dimensions [12, 13], the energy-
momentum contains two quite different terms [7]: (i) the bound part which is permanently
‘attached’ to the charge and is carried along with it; (ii) the radiation part detaches itself from
the charge and leads an independent existence. The former is divergent while the latter is finite.
The radiative momentum is accumulated with time while the bound one depends on the state
of the particle’s motion at the instant of observation only. Hence, a charged particle cannot be
separated from its bound electromagnetic ‘cloud’, so that the six-momentum of the particle is
the sum of the mechanical momentum and the electromagnetic bound energy–momentum.

Conserved quantities place stringent requirements on the dynamics of the system. They
demand that the change in radiative energy–momentum and angular momentum should be
balanced by a corresponding change in the already renormalized momentum and angular
momentum of the particle. In four dimensions the energy–momentum balance equation gives
the relativistic generalization of Newton’s second law

ṗ
µ
part = − 2

3e2a2uµ + F
µ
ext (1.5)
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where loss of energy due to radiation is taken into account (see [14]). The angular momentum
balance equation explains how the four-momentum of the charged particle depends on its
velocity and acceleration:

p
µ
part = muµ − 2

3e2aµ (1.6)

where m is the already renormalized rest mass. So, a careful analysis with the use of a
regularization procedure compatible with the Poincaré symmetry leads to the Lorentz–Dirac
equation in the four-dimensional case.

Similarly, in six dimensions the energy–momentum balance equations give a six-
dimensional analogue of the Larmor relativistic rate of radiated energy–momentum [7].
Fifteen angular momentum balance equations will explain how the six-momentum and angular
momentum of the particle depend on worldline characteristics such as six-velocity, six-
acceleration, etc. Does a consistent classical electrodynamics in a spacetime of six dimensions
lead inevitably to the rigid particle? If so, we should arrive at the specific angular momentum
which depends on the particle’s acceleration (see [9–11]).

2. General setting

Let M6 be six-dimensional Minkowski space with coordinates yµ and metric tensor ηµν =
diag(−1, 1, 1, 1, 1, 1). We use the natural system of units with the velocity of light c = 1.
Summation over repeated indices is understood throughout the paper; Greek indices run from
0 to 5, and Latin indices from 1 to 5.

We consider an electromagnetic field Fαβ produced by a point-like particle of charge e.
The particle moves in flat spacetime M6 on an arbitrary worldline

ζ : R → M6 u �→ (zµ(u)) (2.1)

where u is proper time. The Maxwell field equation are

Fαβ
,β = 8π2

3
jα (2.2)

where current density jα is given by

jα = e

∫
dτ uα(u)δ(y − z(u)). (2.3)

uα(u) denotes the (normalized) six-velocity vector dzα(u)/du and the factor 8π2/3 is the area
of a four-dimensional unit sphere embedded in M6 (see equation (1.4) for D = 6).

We express the electromagnetic field in terms of a vector potential, F̂ = dÂ. In the
Lorentz gauge Aα

,α = 0 the Maxwell field equations become

�Aα(y) = −8π2

3
jα(y) (2.4)

where � := ηαβ∂α∂β is the wave operator. Using the retarded Green function
[1, equation (3.4)] associated with the d’Alembert operator � and the charge-current density
vector (2.3) we construct the retarded Liénard–Wiechert potential in six dimensions:

Aµ(y) = e

∫
du uµ(u)

(
− 1

2πR

d

dR

δ(T − R)

R

)
. (2.5)

Here T := y0 − z0(u) and R := |y − z(u)|.
We suppose that the dynamics of our composite particle plus field system is governed by

the conservation laws which arise from the invariance of the closed system under time and
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Figure 1. Integration region considered in the evaluation of the bound and emitted conserved
quantities produced by all points of the worldline up to the end point (z0(τ ), z(τ )). Retarded
spheres S(z(u), r), u ∈ ] −∞, τ ], of constant radii r constitute a thin world tube �r enclosing the
worldline ζ . The sphere S(z(u), r) is the intersection of the future light cone with vertex at point
zµ(u) ∈ ζ and r-shifted hyperplane �(z(u), r) which is orthogonal to six-velocity uµ(u).

space translations as well as space and mixed spacetime rotations. The components of the
momentum six-vector carried by the electromagnetic field are [7]

pν
em(τ ) = P

∫
�

dσµ T µν (2.6)

where dσµ is the vectorial surface element on an arbitrary space-like hypersurface �. The
components of the electromagnetic field’s stress–energy tensor

8π2

3
T µν = FµλF ν

λ − 1/4ηµνF κλFκλ (2.7)

have singularities on a particle trajectory (2.1). In equation (2.6) the capital letter P denotes
the principal value of the singular integral, defined by removing from � an ε-sphere around
the particle and then passing to the limit ε → 0.

The angular momentum tensor of the electromagnetic field is written as [4]

Mµν
em (τ ) = P

∫
�

dσα(yµT αν − yνT αµ). (2.8)

Following [7], we calculate the energy–momentum (2.6) and angular momentum (2.8)
which flow across a world tube of constant radius r enclosing the worldline ζ . This integration
hypersurface, say �r , is a disjoint union of (retarded) spheres of constant radii r centred on a
worldline of the particle (see figure 1). The sphere S(z(u), r) is the intersection of the future
light cone generated by null rays emanating from z(u) ∈ ζ in all possible directions

C(z(u)) =
{

y ∈ M6 : (y0 − z0(u))2 =
∑

i

(yi − zi(u))2, y0 − z0(u) > 0

}
(2.9)

and the tilted hyperplane

�(z(u), r) = {y ∈ M6 : uα(u)(yα − zα(u) − uα(u)r) = 0}. (2.10)
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Figure 2. In MCLF the retarded distance is the distance between any point on the spherical light
front S(0, r) = {y ∈ M6 : (y0′

)2 = ∑
i (y

i′ )2, y0′ = r > 0} and the particle. The charge is placed
at the coordinate origin; it is momentarily at rest. The point C ∈ S(0, r) is linked to the coordinate
origin by a null ray characterized by the angles ϑA specifying its direction on the cone. The null
vector n with components nα′ = yα′

/r defines this direction.

3. Coordinate system

An appropriate coordinate system is very important for the integration. We use an obvious
generalization of a coordinate system centred on an accelerated worldline [5, 16]. The set
of curvilinear coordinates for flat spacetime M6 involves the retarded time u and the retarded
distance r introduced in the previous section (see equations (2.9) and (2.10), respectively).
To understand the situation more thoroughly, we pass to the particle’s momentarily comoving
Lorentz frame (MCLF) where the particle is momentarily at rest at the retarded time u. The
retarded distance r is the distance between an observer event C ∈ �r and the particle, as
measured at u in the MCLF (see figure 2). Points on the sphere S(0, r) ⊂ �r are distinguished
by four spherical angles (φ, ϑ1, ϑ2, ϑ3):

y0′ = r y1′ = r cos φ sin ϑ1 sin ϑ2 sin ϑ3

y2′ = r sin φ sin ϑ1 sin ϑ2 sin ϑ3

y3′ = r cos ϑ1 sin ϑ2 sin ϑ3

y4′ = r cos ϑ2 sin ϑ3

y5′ = r cos ϑ3. (3.1)

In the laboratory frame the points on this sphere have the following coordinates,

yα = zα(u) + r�α
α′(u)nα′

= zα(u) + rkα (3.2)

where nα′ = yα′
/r .

We see that flat spacetime M6 becomes a disjoint union of world tubes �r, r > 0,

enclosing the particle trajectory (2.1). A world tube is a disjoint union of (retarded) spheres
of constant radii r centred on a world line of the particle. Points on a sphere are distinguished
by four spherical polar angles.
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4. Electromagnetic potential and electromagnetic field in six dimensions

In even spacetime dimensions the Green function associated with the d’Alembert operator is
localized on the light cone [1, 2]. Having integrated (2.5) we obtain the potential

Aµ = e

2π

1

r

d

du

(
uµ(u)

r

)

= e

2π

[
aµ(u)

r2
+

uµ(u)

r3
(1 + rak)

]
(4.1)

where ak = aαkα is the component of the acceleration aα = duα/du in the direction of kα .
It is understood that in equation (4.1), all worldline quantities (such as uµ and aµ) are to be
evaluated at the retarded time u.

The potential (4.1) differs from that of [7, equation (13)] just by an overall coefficient
e/2π .

The direct particle field [17] is defined in terms of this potential by Fαβ = Aβ,α − Aα,β .
Having used the differentiation rule [7, equations (2) and (3)]

∂u

∂yµ
= −kµ

∂r

∂yµ
= −uµ + (1 + rak)kµ (4.2)

we obtain

F = e

2π

(u ∧ a

r3
+ V ∧ k

)
(4.3)

where

Vµ = 3uµ

r4
+

3(aµ + 2uµak)

r3
+

ȧµ + uµȧk + 3aµak + 3uµa2
k

r2
. (4.4)

The overdot means the derivative with respect to retarded time u. Liénard–Wiechert field
(4.3) coincides with the field obtained in [7, equation (14)] where the ‘mostly minus’ metric
signature should be replaced by the ‘mostly plus’ one.

5. Energy–momentum of the retarded Liénard–Wiechert field in six dimensions

It is straightforward to substitute the components (4.3) into equation (2.7) to calculate the
stress–energy tensor of the electromagnetic field. Following [7], we present T αβ as a sum of
radiative and bound components

T αβ = T
αβ

rad + T
αβ

bnd. (5.1)

The radiative part scales as r−4:

8π2

3
T

αβ

rad = e2

4π2

kαkβ

r4
V

µ

(−2)V
(−2)
µ (5.2)

where the components V
µ

(−2) of six-vector V(−2) are defined by equation (4.4). The others T(−κ)

constitute the bound part of the Maxwell energy–momentum tensor density:

T
αβ

bnd = T(−8) + T(−7) + T(−6) + T(−5). (5.3)

(Each term has been labelled according to its dependence on the distance r.)
According to [7], the outward-directed surface element dσµ of a five-cylinder r = const

in M6 is
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dσµ = [−uµ + (1 + rak)kµ]r4 d�4 du (5.4)

where d�4 = dϑ1 dϑ2 dϑ3 dφ sin ϑ1 sin2 ϑ2 sin3 ϑ3 is the element of solid angle in five
dimensions. The angular integration can be handled via the relations∫

d�4 = 8π2

3

∫
d�4 nαnβ = 8π2

15
(ηαβ + uαuβ)∫

d�4 nαnβnγ nκ = 8π2

105
[(ηαβ + uαuβ)(ηγκ + uγ uκ) + (ηαγ + uαuγ )(ηβκ + uβuκ)

+ (ηακ + uαuκ)(ηβγ + uβuγ )]. (5.5)

The integral of the polynomial in odd powers of nα := kα − uα vanishes.
We are now concerned with volume integration of (2.6). Although the surface element

(5.4) contains the term which is proportional to r, the radiative part of the electromagnetic
field six-momentum prad does not depend on the distance

p
µ

rad = e2

4π2

∫ τ

−∞
du

(
4

5
uµȧ2 − 6

35
a2ȧµ +

3

7
aµ(a2)· + 2a4uµ

)
. (5.6)

(We denote by (a2)· the derivative da2/du.) The reason is that kαT
αβ

rad = 0. Since kαT
αβ

(−5) = 0,
this term does not produce a change in radiation flux.

Volume integration of the bound part of the stress–energy tensor over the world tube �r

of constant radius r reveals that the bound energy–momentum is a function of the end points
only:

p
µ

bnd = e2

4π2

[
3

2

uµ(u)

r3
+

12

5

aµ(u)

r2
+ 2

a2uµ(u)

r

]u=τ

u→−∞
. (5.7)

(The fact is that the total (retarded) time derivatives arise from angular integration.) If the
charged particle was asymptotically free in the remote past, we obtain the Coulomb-like self-
energy of constant value. The upper limit drastically depends on the value of r. To evaluate
the bound part of six-momentum in the neighbourhood of the particle we take the limit r → 0
in (5.7). If r tends to zero, p

µ

bnd → ∞. Hence equation (5.7) expresses the divergent part of
the energy–momentum which is permanently attached to the charge.

6. Angular momentum of the retarded Liénard–Wiechert field in six dimensions

We now turn to the calculation of the angular momentum tensor (2.8). We calculate how much
electromagnetic field angular momentum flows across a thin world tube enclosing a particle’s
trajectory (2.1) up to the observation time τ (see figure 1).

Decomposition of the angular momentum tensor density into the bound component and
the radiative component is a very important for the calculation. Indeed, the former accounts
for the angular momentum which remains bound to the charge while the latter corresponds to
the amount of angular momentum which escapes to infinity.

We put (5.1) into (2.8) where the right-hand side of equation (3.2) should be substituted
for y. It contains the term which is proportional to distance r. Vector surface element (5.4)
also depends on r. In general, terms scaling as r2 may appear. Since T

αβ

(−4) is proportional to

kαkβ and the equality kαT
αβ

(−5) = 0 is fulfilled, the radiative component M
µν

rad does not depend
on the distance:
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M
µν

rad = −
∫ τ

−∞
du

∫
d�4 r4uα

(
zµT αν

(−4) − zνT
αµ

(−4)

)
−

∫ τ

−∞
du

∫
d�4 r5uα

(
kµT αν

(−5) − kνT
αµ

(−5)

)
+

∫ τ

−∞
du

∫
d�4 r6akkα

(
kµT αν

(−6) − kνT
αµ

(−6)

)
. (6.1)

Having performed the angle integration we obtain

M
µν

rad = e2

4π2

{∫ τ

−∞
du

(
zµP ν

rad − zνP
µ

rad

)
+

∫ τ

−∞
du

[
4

5
(aµȧν − aνȧµ) +

64

35
a2(uµaν − uνaµ)

]}
(6.2)

where symbol Prad denotes the integrand of equation (5.6).
The remaining terms involved in the angular momentum tensor density constitute the

bound part of the angular momentum of the electromagnetic field:

M
µν

bnd =
∫

�r

dσα

(
zµT αν

bnd − zνT
αµ

bnd

)
+

∫
�r

dσα

[
(yµ − zµ)T αν

(−8) − (yν − zν)T
αµ

(−8)

]
+

∫
�r

dσα

[
(yµ − zµ)T αν

(−7) − (yν − zν)T
αµ

(−7)

]
+

∫ τ

−∞
du

∫
d�4 r5(−uα + kα)

(
kµT αν

(−6) − kνT
αµ

(−6)

)
. (6.3)

Volume integration shows that the decomposition is meaningful. Indeed, the bound angular
momentum depends on the state of motion of the particle at the end points only:

M
µν

bnd = e2

4π2

[
zµP ν

bnd − zνP
µ

bnd +
12

5

uµaν − uνaµ

r

]u=τ

u→−∞
. (6.4)

By symbol Pbnd we mean the expression in between the squared brackets of equation (5.7).
It is worth noting that M

µν

bnd contains, apart from the usual term of type z ∧ ppart, also an
extra term which can be interpreted as the ‘electromagnetic shadow’ of the internal angular
momentum of the ‘bare’ particle. It prompts that the bare ‘core’ possesses a ‘spin’.

7. Energy–momentum and angular momentum balance equations

To derive the radiation reaction force in six dimensions we study the energy–momentum and
angular momentum balance equations.

We calculate how much electromagnetic-field momentum and angular momentum flow
across hypersurface �r up to the proper time τ . We can do it at a time τ + �τ . We demand
that change in these quantities be balanced by a corresponding change in the quantities of the
particle, so that the total energy–momentum and angular momentum are properly conserved.

Expressions (5.7) and (6.4) show that a charged particle cannot be separated from its bound
electromagnetic ‘cloud’ which has its own energy–momentum and angular momentum. These
quantities, together with their ‘bare’ mechanical counterparts, constitute the six-momentum
and angular momentum of a ‘dressed’ charged particle. We proclaim the finite characteristics
as those of true physical meaning.
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It would not make sense to disrupt the bonds between different powers of small parameter
r in (5.7). It is sufficient to assume that a charged particle possesses its own (already
renormalized) six-momentum ppart which is transformed as a usual six-vector under the
Poincaré group. The total energy–momentum of a closed system of an arbitrarily moving
charge and its electromagnetic field is equal to the sum

P µ = p
µ
part + p

µ

rad (7.1)

where prad is the radiative part (5.6) of the energy–momentum of the electromagnetic field
which detaches itself from the charge and leads an independent existence.

With (6.4) in mind we assume that the already renormalized angular momentum tensor
of the particle has the form

M
µν
part = zµpν

part − zνp
µ
part + uµπν

part − uνπ
µ
part. (7.2)

In [9, 10, 15] the extra momentum πpart is due to additional degrees of freedom associated
with acceleration involved in the Lagrangian function for a rigid particle.

The total angular momentum of our composite particle plus field system is written as

Mµν = M
µν
part + M

µν

rad (7.3)

where Mrad is the radiative part (6.2) of the angular momentum of the electromagnetic field
which depends on all previous motions of a source. Our next task is to derive expressions
which explain how six-momentum and angular momentum of a charged particle depend on its
velocity and acceleration, etc. By the differentiation of equation (7.1) we obtain the following
energy–momentum balance equation:

ṗ
µ
part = − e2

4π2

(
4

5
uµȧ2 − 6

35
a2ȧµ +

3

7
aµ(a2)· + 2a4uµ

)
. (7.4)

(All the particle characteristics are evaluated at the time of observation τ .) Having
differentiated (7.3) and taking into account (7.4) we arrive at the equality which does not
contain ṗpart:

uµ
(
pν

part + π̇ ν
part

) − uν
(
p

µ
part + π̇

µ
part

)
+ aµπν

part − aνπ
µ
part

= − e2

4π2

[
4

5
(aµȧν − aνȧµ) +

64

35
a2(uµaν − uνaµ)

]
. (7.5)

It is convenient to rewrite this system of fifteen linear equations in twelve variables pα
part + π̇α

part
and πα

part as follows,

u ∧ (ppart + π̇part) + a ∧ πpart = − e2

4π2

[
4

5
a ∧ ȧ +

64

35
a2u ∧ a

]
(7.6)

where the symbol ∧ denotes the wedge product. Hence one has again

u ∧
(

ppart + π̇part +
e2

4π2

64

35
a2a

)
+ a ∧

(
π +

e2

4π2

4

5
ȧ

)
= 0. (7.7)

Their solutions involve three arbitrary scalar functions, e.g. M, µ and ν:

p
β
part + π̇

β
part = Muβ + νaβ − e2

4π2

64

35
a2aβ (7.8)

π
β
part = µaβ + νuβ − e2

4π2

4

5
ȧβ . (7.9)

Therefore, the rank of system (7.6) is equal to nine.
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Scrupulous analysis of the consistency of (7.8) and (7.9) with six first-order differential
equations (7.4) reveals that the six-momentum of a charged particle contains two (already
renormalized) constants:

p
β
part = muβ + µ

(
−ȧβ +

3

2
a2uβ

)
+

e2

4π2

[
4

5
äβ − 8

5
uβ(a2)· − 64

35
a2aβ

]
(7.10)

(see the appendix). The first, m, looks like a rest mass of the charge. But the true rest mass
is identical to the scalar product of the six-momentum and six-velocity [8]. Since the scalar
product depends on the square of acceleration as well as its time derivative

m0 = −(ppart · u) = m +
µ

2
a2 − e2

4π2

2

5
(a2)· (7.11)

the renormalization constant m is a formal parameter and its physical sense is not clear.
The second, µ, is intimately connected with the wedge product u ∧ πpart := spart. With

equation (7.2) in mind we call

s
αβ
part = µ(uαaβ − uβaα) − e2

4π2

4

5
(uαȧβ − uβȧα) (7.12)

the internal angular momentum of the particle. But its magnitude is not constant

s2 = −1

2
s

part
αβ s

αβ
part = µ2a2 + µ

e2

5π2
(a2)· +

e4

25π4
(ȧ2 + a4). (7.13)

Therefore, this name cannot be understood literally.
Having substituted the right-hand side of equation (7.10) for the six-momentum of the

particle in equation (7.4) we derive the Lorentz–Dirac equation of motion of a charged particle
under the influence of its own electromagnetic field. The problem of including an external
device requires careful consideration.

When considering the system under the influence of an external device the time derivative
Ṗ of total momentum P is equal to external force Fext. It changes the energy–momentum
balance equation (7.4) as follows:

ṗ
µ
part +

e2

4π2

(
4

5
uµȧ2 − 6

35
a2ȧµ +

3

7
aµ(a2)· + 2a4uµ

)
= F

µ
ext. (7.14)

The corresponding change of the total angular momentum Mµν is defined by an external
torque

Ṁµν = zµF ν
ext − zνF

µ
ext. (7.15)

Expression (7.10) was first obtained by Kosyakov in [7, equation (37)]. The derivation
is based upon consideration of energy–momentum conservation only. The author constructs
an appropriate Schott term to ensure the orthogonality of the radiation reaction force to the
particle six-velocity. Our derivation is based upon considerations of 21 conserved quantities
corresponding to the symmetry of a closed system of charged particle and electromagnetic
field under the Poincaré group. The conservation laws are an immovable fulcrum about which
tips the balance of truth regarding renormalization and radiation reaction.

8. Conclusions

Our consideration is founded on the field and the interaction terms of action (1.1). They
constitute the action functional which governs the propagation of the electromagnetic field
produced by a moving charge (i.e., the Maxwell equations with point-like source).
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We see that the particle part of initial action integral (1.1), which is proportional to the
worldline length, is inconsistent with the others, Ifield and Iint. Indeed, the angular momentum
tensor of a structureless particle

M
µν
part = zµpν

part − zνp
µ
part (8.1)

corresponds to Ipart given by (1.2). Having analysed angular momentum balance equations
one has again

u ∧
(

ppart +
e2

4π2

64

35
a2a

)
+

e2

4π2

4

5
a ∧ ȧ = 0 (8.2)

instead of (7.7). Its solution is a motion with constant velocity, where p
µ
part do not change.

Hence the action functional based on the higher derivative Lagrangian for a ‘rigid’ relativistic
particle [9–11, 15] should be substituted for Iparticle in (1.2). It is sufficient to renormalize all
the divergences arising in six-dimensional electrodynamics (these connected with bound six-
momentum and those associated with bound angular momentum of the electromagnetic field).
The variation of modified action with respect to particle variables results in the appropriate
equation of motion of a charged particle in response to the electromagnetic field.

A surprising feature of the study of Poincaré invariance of the dynamics of a closed
particle plus field system is that the conservation laws determine the form of individual
characteristics of the particle such as the momentum and the angular momentum. The fact is
that a charged particle cannot be separated from its bound electromagnetic ‘cloud’ which has
its own momentum and angular momentum. These quantities together with the corresponding
characteristics of the bare ‘core’ constitute the momentum and angular momentum of a
‘dressed’ charged particle.

So, in four dimensions the momentum of a bare ‘core’ is proportional to its four-velocity.
An electromagnetic ‘cloud’ renormalizes the bare mass and adds the term which is proportional
to the four-acceleration (see equation (1.6)). The extra term can be obtained from the angular
momentum balance equation [14]. In six dimensions a bare charge should possess (non-
conventional) internal angular momentum

s
µν

0 = µ0 (uµaν − uνaµ) (8.3)

with a magnitude which is proportional to the square of the acceleration (see equation (7.13)).
Its six-momentum is not proportional to the six-velocity

p
µ

0 = m0u
µ + µ0

(−ȧµ + 3
2a2uµ

)
. (8.4)

The energy–momentum and angular momentum balance equations give the six-momentum
(7.10) of a ‘dressed’ charged particle which coincides with that obtained in [7].

It is interesting to consider the motion of test particles (i.e., point charges which themselves
do not influence the field). In four dimensions the limits e → 0 and m → 0 with their ratio
being fixed result in the Maxwell–Lorentz theory of a test particles. The momentum of a test
particle is proportional to its four-velocity, the loss of energy due to radiation is too small to be
observed. In six dimensions the test particle is the rigid particle. Its momentum is not parallel
to the six-velocity. The problem of motion of such particles in an external electromagnetic
field is considered in [18].

One way of continuing the present work would be the investigation of arbitrary even
dimensions. It is sufficient to limit our calculations to the radiative parts of energy–momentum
and angular momentum carried by an electromagnetic field. The reason is that they determine
the energy–momentum and angular momentum balance equations which allow us to establish
the radiation reaction force.
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Appendix

Since (u · a) = 0, the scalar product of particle six-velocity on the first-order time derivative
of particle six-momentum (7.4) is as follows:

(ṗpart · u) = e2

4π2

(
4

5
ȧ2 +

64

35
a4

)
. (A.1)

Similarly, the scalar product of particle acceleration on the particle six-momentum (7.8) is
given by

(ppart · a) = νa2 − e2

4π2

64

35
a4 − (π̇part · a). (A.2)

Summing up (A.1) and (A.2) we obtain

(ppart · u)· = νa2 +
e2

4π2

4

5
ȧ2 − (π̇part · a). (A.3)

On the other hand, the time derivative (ppart · u)· of the scalar product of particle velocity on
the momentum (7.8) is written as

(ppart · u)· = −Ṁ − (π̇part · u)·. (A.4)

Subtracting (A.4) from (A.3), one has again

Ṁ = −νa2 − e2

4π2

4

5
ȧ2 − (π̈part · u). (A.5)

Further we calculate the scalar product of the second-order derivative of (7.9) on the
velocity of the particle

(π̈part · u) = −2µ̇a2 − 3

2
µ(a2)· − ν̈ − νa2 +

e2

4π2

(
8

5
(a2)·· − 4

5
ȧ2

)
. (A.6)

Having substituted it into the previous equation we arrive at the following differential equation:

Ṁ = 2µ̇a2 +
3

2
µ(a2)̇ + ν̈ − e2

4π2

8

5
(a2)··. (A.7)

It can be solved iff the scalar µ does not change with time

M = m +
3

2
µa2 + ν̇ − e2

4π2

8

5
(a2)·. (A.8)

Having substituted it into (7.8) and taking into account the time derivative of (7.9), we
derive expression (7.10) for the components of the six-momentum of the charged particle. It
depends on two renormalization constants, m and µ.
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